Coordenação Geral de Acreditação

ORIENTAÇÃO PARA A REALIZAÇÃO DE CALIBRAÇÃO DE MEDIDORES DIGITAIS DE PRESSÃO

Documento de caráter orientativo

DOQ-CGCRE-014

Revisão 05 - ABR/2020

	DOQ-CGCRE-014	REV. 05	PÁGINA 2/10
I			

SUMÁRIO

- 1 Objetivo
- 2 Campo de Aplicação
- 3 Responsabilidade
- 4 Histórico das Revisões
- 5 Documentos Complementares
- 6 Documentos de Referência
- 7 Siglas
- 8 Terminologia e Definições
- 9 Condições Gerais
- 10 Preparação
- 11 Método de Calibração
- 12 Incerteza de Medição
- Anexo A Tabela de Conversões de Unidades
- Anexo B Planilha de Incertezas de Manômetros, Manovacuômetros e Vacuômetros Digitais
- Anexo C Estimativa da Incerteza de Medição em um Ponto Interpolado na Curva de Calibração do Padrão

1 OBJETIVO

Este documento estabelece orientações para a realização de calibração de medidores digitais de pressão.

2 CAMPO DE APLICAÇÃO

Este documento aplica-se à Dicla, aos laboratórios de calibração acreditados e postulantes à acreditação na área de pressão e aos avaliadores e especialistas que atuam nos processos de acreditação de laboratórios nesta área.

3 RESPONSABILIDADE

A responsabilidade pela revisão deste documento é da Dicla/Cgcre.

4 HISTÓRICO DAS REVISÕES

Revisão	Data	Itens revisados
4	JUL/2019	 Corrigidas referências incorretas no item 11.5. No Anexo A, corrigido o expoente para "-2", para a conversão de unidades de in Hg para bar.
5	ABR/2020	- Atualizada para adequação à revisão 7 da Nie-Cgcre-020.

5 DOCUMENTOS COMPLEMENTARES

ABNT NBR ISO/IEC 17025	Requisitos gerais para a competência de laboratórios de ensaio e calibração
ASME - B40-7 - 2005	Gauges: Pressure Indicating Digital
ASME B40.100- 2013	Pressure Gauges and Gauge Attachments
NIT-Dicla-021	Expressão da incerteza de medição por laboratórios de calibração

REV. 05 PÁGINA 3/10

6 DOCUMENTOS DE REFERÊNCIA

I
Medidores de pressão - Parte 1: Medidores analógicos de
pressão com sensor de elemento elástico - Requisitos de
fabricação, classificação, ensaios e utilização
Systematic Approach to estimating uncertainty in pressure
measurement. In: IMEKO WORLD CONGRESS, n XVIII,
2006. Anais Rio de Janeiro: 2006.
"A Apresentação do Estudo dos Padrões do Laboratório de
Pressão do INMETRO e Suas Melhores Capacidades de
Medição" - METROLOGIA 2000 – SP
"Apresentação das Planilhas de Incerteza de todos os
Serviços de Calibração realizados pelo Laboratório de
Pressão do INMETRO" - METROLOGIA 2000 - S
Relação Padronizada de Serviços Acreditados para
Laboratórios de Calibração
Adotar, no Brasil, a 1a edição luso-brasileira do Vocabulário
Internacional de Metrologia - Conceitos fundamentais e
gerais e termos associados (VIM 2012)
Quadro Geral de Unidades

7 SIGLAS

VIM

WEF

ABNT ANSI APHA ASTM	Associação Brasileira de Normas Técnicas American National Standards Institute (Instituto Nacional Americano de Normas) American Public Health Association (Associação Americana Pública de Saúde) American Society for Testing and Materials (Sociedade Americana para Ensaios e Materiais)
AWWA	American Water Works Association (Associação Americana de Sistemas de Distribuição
	de Águas)
Cgcre	Coordenação Geral de Acreditação
CT	Comissão Técnica
Dicla	Divisão de Acreditação de Laboratórios
DOQ	Documento Orientativo da Qualidade
IEC	International Electrotechnical Commission (Comissão Eletrotécnica Internacional)
IMEKO	International Measurement Confederation (Confederação Internacional de Medidas)
ISO	International Organization for Standardization (Organização Internacional para
	Normalização)
NBR	Norma Brasileira
Nit	Norma Inmetro Técnica

8 TERMINOLOGIA E DEFINIÇÕES

Para o propósito desta Norma, são adotadas as seguintes definições:

World Economic Forum (Fórum Econômico Mundial)

Vocabulário Internacional de Metrologia

8.1 Medidor Digital de Pressão (Manômetro, Vacuômetro e Manovacuômetro)

Medidor que fornece uma indicação de pressão na forma digital, em unidade de pressão.

8.2 Pressão Absoluta

A pressão absoluta (P_{abs}) é a pressão que está acima da pressão "zero" (vácuo zero absoluto).

8.3 Pressão Positiva e Pressão Negativa

A diferença entre uma pressão absoluta e a pressão atmosférica predominante é a pressão positiva ou pressão negativa:

PÁGINA

4/10

$$p_e = p_{abs} - p_{atm}$$

A pressão (P_e) é positiva quando a pressão absoluta for maior que a pressão atmosférica e negativa (Vácuo) quando a pressão absoluta for menor que a pressão atmosférica.

8.4 Pressão Diferencial - Diferença de Pressão

A diferença entre duas pressões p_1 e p_2 é denominada diferença de pressão: $p=p_1-p_2$ ou pressão diferencial $p_{1,2}$.

8.5 Classe de Exatidão

Classes de instrumentos de medição que satisfazem a certas exigências metrológicas destinadas a conservar os erros dentro de limites especificados. As classes dos medidores digitais podem ser estabelecidas de acordo com a tabela 1.

Tabela 1: Classe dos manômetros digitais

Classe	Erro máximo permitido
5A	± 0,05% do limite superior da faixa nominal
4A	± 0,1% do limite superior da faixa nominal valor do fundo da escala
3A	± 0,25% do limite superior da faixa nominal valor do fundo da escala
2A	± 0,5% do limite superior da faixa nominal valor do fundo da escala
Α	± 1,0% do limite superior da faixa nominal valor do fundo da escala
В	± 2,0% do limite superior da faixa nominal valor do fundo da escala
5AR	± 0,05% do valor da indicação
4AR	± 0,1% do valor da indicação
3AR	± 0,25% do valor da indicação
2AR	± 0, 5% do valor da indicação
AR	± 1,0% do valor da indicação
BR	± 2,0% do valor da indicação

8.6 Faixa de Indicação

É o conjunto de valores limitados pelas indicações extremas. (VIM – 4.19).

8.7 Faixa nominal

Faixa de indicação que pode obter em uma posição específica dos controles de um instrumento de medição. (VIM-5.1).

8.8 Amplitude da faixa nominal

Diferença, em módulo, entre os dois limites de uma faixa nominal. (VIM - 5.2).

8.9 Resolução

Menor diferença entre indicações de um dispositivo mostrador que pode ser significativamente percebida. (VIM - 5.12).

8.10 Erro de Indicação

Indicação de um instrumento de medição menos um valor verdadeiro da grandeza de entrada correspondente. (VIM - 5.20).

8.11 Erro Fiducial

Erro de um instrumento de medição dividido por um valor especificado para o instrumento. (VIM - 5.28).

8.12 Repetitividade

Aptidão de um instrumento de medição em fornecer indicações muito próximas, em repetidas aplicações do mesmo mensurando, sob as mesmas condições de medição. (VIM-5.27).

8.13 Histerese

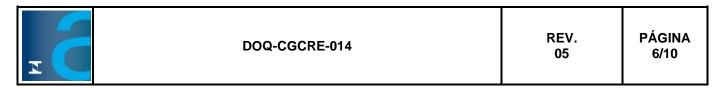
Grau de concordância entre os resultados de medições em um ciclo (pressão crescente e decrescente) num mesmo valor nominal medido. No caso de um medidor digital de pressão, a histerese é determinada a partir da diferença máxima em um dos ciclos expressa em percentagem da faixa de indicação.

8.14 Mensurando

Objeto da medição.

Grandeza específica submetida à medição (VIM-2.6).

8.15 Incerteza de medição


Parâmetro, associado ao resultado de uma medição, que caracteriza a dispersão dos valores que podem ser fundamentadamente atribuídos a um mensurando. (VIM-3.9).

8.16 Tabela de conversão de unidades

Para a conversão das unidades de pressão, utilizar a tabela contida no Anexo A.

8.17 Método Normalizado

É aquele desenvolvido por um organismo de normalização ou outras organizações (por exemplo, ABNT, ASTM, ANSI ou APHA/AWWA/WEF), cujos métodos são aceitos pelo setor técnico em questão.

8.18 Método Não Normalizado

É aquele desenvolvido pelo próprio laboratório ou em outras partes ou adaptado a partir de métodos normalizados e validados. Por exemplo, métodos publicados em revistas técnicas, métodos de fabricantes de equipamentos, métodos utilizando conjuntos (kits) de ensaio e instrumentos portáteis.

9 CONDIÇÕES GERAIS

Este documento é resultado do trabalho da Comissão Técnica de Pressão (CT-9). Embora o documento não se constitua um requisito para a acreditação, ele contém informações relevantes para a elaboração e avaliação de procedimento de calibração de medidores digitais de pressão. O laboratório poderá usar outros métodos desde que validados, conforme item 7.2 da ABNT NBR ISO/IEC 17025.

A realização da calibração dos medidores digitais de pressão (vacuômetro, manovacuômetro e manômetro) tem como base a norma ASME-B40-7-2005. Este documento complementa esta norma, com alguns outros parâmetros adicionais necessários na calibração dos medidores digitais de pressão.

10 PREPARAÇÃO

10.1 Determinação do Número de Pontos de Calibração

Recomenda-se que o medidor digital seja calibrado, no mínimo, de acordo com os pontos listados na tabela 2, conforme a sua respectiva classe.

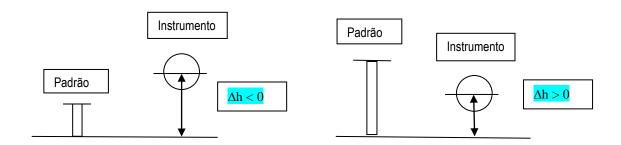
Tabela 2 - N° de pontos mínimos para instrumentos digitais

Classe	N° de pontos mínimos		
5A, 5AR, 4A, 4AR, 3A, 3AR, 2A, 2AR,	10		
A, AR, B, BR	5		

Conforme a solicitação do cliente, poderá haver alguma alteração na quantidade de pontos a serem calibrados. Neste caso, recomenda-se preservar o número mínimo de pontos da calibração citados na tabela 2.

10.2 Definição do Padrão a ser utilizado

Recomenda-se que a classe de exatidão do padrão utilizado na calibração seja pelo menos 4 vezes melhor do que a classe de exatidão do instrumento a ser calibrado, quando o padrão utilizado for um manômetro, vacuômetro ou manovacuômetro (ASME B40.100- 2013).


Nota - Convém que o padrão seja utilizado apenas na(s) unidade(s) de pressão na(s) qual(is) foi calibrado.

10.3 Medição da diferença de altura entre o padrão e o instrumento

Quando aplicável, principalmente se o instrumento mede pressão hidráulica, medir a diferença de altura entre o padrão e o instrumento (de acordo com a figura), indicando se o padrão está acima ou abaixo do instrumento.

REV. 05 PÁGINA 7/10

11 MÉTODO DE CALIBRAÇÃO

11.1 Verificar a estanqueidade do sistema, aplicando pressão máxima (manômetro) ou vácuo máximo possível (vacuômetro).

Nota - Recomenda-se, no caso de manovacuômetros, que a verificação seja feita nos dois limites da faixa de indicação do instrumento.

- 11.2 Aliviar totalmente a pressão (manômetro) ou vácuo (vacuômetro).
- **11.3** Iniciar a calibração com aplicação crescente (carregamento) de pressão ou vácuo, nos pontos determinados conforme (tabela 2); o registro da indicação poderá ser realizado tanto no padrão quanto no instrumento em teste.
- **11.4** Aliviar continuamente (descarregamento) a pressão ou vácuo, registrando as indicações nos mesmos pontos de carregamento.
- 11.5 Realizar 11.3 e 11.4 no mínimo duas vezes.

12 INCERTEZA DE MEDIÇÃO

A incerteza de medição é estimada de acordo com a NIT-Dicla-021 e as informações relacionadas às fontes de incerteza e à função da medição (modelo matemático) encontram-se no Anexo B.

A estimativa da incerteza da medição de um ponto interpolado da curva de calibração do padrão encontra-se no Anexo C.

/ANEXO A

DOQ-CGCRE-014

REV. 05 PÁGINA 8/10

ANEXO A TABELA DE CONVERSÕES DE UNIDADES

↑ →=	Pa (N/m²)	bar	(*) psi	(*) kgf/cm²	(*) (**) mm Hg = Torr	(*)(**) in Hg	(*)(***) m H ₂ O	(*)(***) in H ₂ O
1Pa =		1,000000	1,450377	1,019716	7,500627	2,953003	1,019716	4,014613
(N/m²)	1	x 10 ⁻⁵	x 10-4	x 10 ⁻⁵	X 10-3	x 10-4	x 10-4	x 10 ⁻³
	1,00000		1,450377	1,019716	7,500627	2,953003	1,019716	4,014613
1 bar =	x 10 ⁵	1	x 10	1,019710	X 10 ²	x 10	x 10	x 10 ²
(*)	6,894757	6,894757		7,030696	5,171500	2,036024	7,030696	2,767990
1 psi =	x 10³	x 10-2	1	x 10-2	x 10	2,030024	x 10 ⁻¹	x 10
(*)	9,806650	9,806650	1,422334		7,355602	2,895906	1,000000	3,937008
1 kgf/cm ² =	x 10 ⁴	x 10 ⁻¹	x 10	1	X 10 ²	x 10	x 10	x 10 ²
(*) (**)	1,333222	1,333222	1,933675	1,359508		3,937008	1,359508	5,352394
1 mm Hg =	x 10 ²	x 10-3	x 10 ⁻²	x 10-3	1	x 10-2	x 10-2	x 10 ⁻¹
(*)(**)	3,386384	3,386384	4,911534	3,453150	2,540000		3,453150	1,359508
1 in Hg =	x 10 ³	x 10 ⁻²	x 10 ⁻¹	x 10 ⁻²	x 10	1	x 10 ⁻¹	x 10
(*)(***)	9,806650	9,806650	1,422334	1,000000	7,355602	2,895906		3,937008
1 m H ₂ O =	x 10 ³	x 10 -2	1,422334	x 10 ⁻¹	x 10	2,093900	1	x 10
(*)(***)	2,490889	2,490889	3,612729	2,540000	1,868323	7,355602	2,540000	
1 in H ₂ O =	x 10 ²	x 10 - 3	x 10 - 2	x 10 ^{- 3}	1,000323	x 10 - 2	x 10 · ²	1

Observações:

1 (*) – gravidade normal:

 $g_N = 9,80665 \text{ m/s}^2$

2 – (**) – massa específica do mercúrio a 0 °C e submetida a uma pressão barométrica de 101325 Pa:

 $_{\rho \; Hg} = 1,359508 \; x \; 10^4 \, kg/m^3$

3 - (***) – massa específica da água a 4 $^{\circ}$ C e submetida a uma pressão barométrica de 101325 Pa:

 $_{\rho}$ H2O = 1,000000 x 10 3 kg/m 3

	/ANEXO B

DOQ-CGCRE-014

REV. 05 PÁGINA 9/10

ANEXO B PLANILHA DE INCERTEZAS DE MANÔMETROS, MANOVACUÔMETROS E VACUÔMETROS

Fontes de Incerteza	Valor (kPa)	Distribuição	Divisor	Coef. de sensibilidade	incerteza (kPa)	Grau de liberdade
Repetição das indicações do instrumento no ponto		Normal	√n	1		n-1
Certificado de calibração do padrão		Normal	2			80
*Curva de Calibração do Padrão		Normal	1	1		n-2
Resolução do Instrumento		Retangular	√3	1		80
Incerteza Combinada		Normal	-	-	••••	
Incerteza Expandida		Normal k**		-		

DIGITAIS

/ANEXO C

^{*} Padrão de Pressão do Grupo Relativo

^{**}Encontrado realizando o cálculo de Veff

ANEXO C

ESTIMATIVA DA INCERTEZA DE MEDIÇÃO EM UM PONTO INTERPOLADO NA CURVA DE CALIBRAÇÃO DO PADRÃO

$$P_{ref} = a + bP_i$$

$$D = n\sum P_i^2 - (\sum P_i)^2$$

$$s^2 = \frac{\sum \Delta^2}{n-2}$$

$$\Delta = \left| P_{ref_{ ext{exp}erimental}} - P_{ref_{calculado\ pela\ curva}}
ight|$$

$$s_a^2 = \frac{s^2 \sum P_i^2}{D}$$
 $u_a = \sqrt{s_a^2}$

$$s_b^2 = n \frac{s^2}{D}$$
 $u_b = \sqrt{s_b^2}$

$$r_{(a,b)} = -\frac{\sum P_i}{\sqrt{n \sum P_i^2}}$$

Incerteza de qualquer valor interpolado na curva de calibração

$$u_{y}^{2} = \sum_{i=1}^{N} c_{i}^{2} u_{xi}^{2} + 2 \sum_{i=1}^{N} \sum_{j=1}^{N} c_{i} c_{j} u_{xi} u_{xj} r_{xi,xj}$$
 (*)

Neste caso, as grandezas de entrada são os coeficientes a e b, deste modo, então:

$$rac{\partial P_{ref}}{\partial a}=1$$
 e $rac{\partial P_{ref}}{\partial b}=p_i$ logo, a equação (*) fica:

$$u_y^2 = 1^2 u_a^2 + p_i^2 u_b^2 + 2 \times 1 \times p_i \times u_a u_b r_{a,b}$$

(*) Incerteza de qualquer ponto interpolado na curva de calibração do padrão.
